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ABSTRACT: Methicillin-resistant Staphylococcus aureus (MRSA)
has been one of the major nosocomial pathogens to cause frequent
and serious infections that are associated with various biomedical
surfaces. This study demonstrated that surface modified with host
defense peptide-mimicking β-peptide polymer, has surprisingly high
bactericidal activities against Escherichia coli (E. coli) and MRSA. As
surface-tethered β-peptide polymers cannot move freely to adopt
the collaborative interactions with bacterial membrane and are too
short to penetrate the cell envelop, we proposed a mode of action
by diffusing away the cell membrane-stabilizing divalent ions, Ca2+

and Mg2+. This hypothesis was supported by our study that Ca2+

and Mg2+ supplementation in the assay medium causes up to 80% loss of bacterial killing efficacy and that the addition of divalent
ion chelating ethylenediaminetetraacetic acid into the above assay medium leads to significant recovery of the bacterial killing
efficacy. In addition to its potent bacterial killing efficacy, the surface-tethered β-peptide polymer also demonstrated excellent
biocompatibility by displaying no hemolysis and supporting mammalian cell adhesion and growth. In conclusion, this study
demonstrated the potential of β-peptide polymer-modified surface in addressing nosocomial infections that are associated with
various surfaces in biomedical applications.

KEYWORDS: β-peptide polymer, graft to, antimicrobial surface, divalent ion, membrane destabilization, biocompatible surface,
antimicrobial resistance, MRSA

■ INTRODUCTION
Hospital-acquired microbial infections are grand challenges to
human health. A large proportion of norsocomial infections are
associated with the surfaces of facilities, surgical tools, and
implanted biomaterials and devices. To prevent such infections,
antibiotics, amine (majorly quaternary ammonium)-containing
small molecules and polymers, and silver and singlet oxygen-
generating compounds have been used or studied either in
solution or as surface coatings.1−28 The quick emergence of
antimicrobial drug-resistant bacteria implies far less and even
no available antibiotics for effective treatment.29 Quaternary
ammonium antimicrobials have been extensively used over
years as efficient antimicrobial agents but are limited to topical
applications because of the cytotoxicity of quaternary
ammonium groups in general. Therefore, huge amount of

efforts have been devoted to reduce the cytotoxicity by
introducing biocompatible poly(ethylene glycol) and poly-
saccharides into the structures of quaternary ammonium
antimicrobial agents.2,30

To address the antimicrobial resistance challenge, especially
for conventional antibiotics, host defense peptides (HDPs) and
their polymeric mimics were actively studied.30−44 Biocompat-
ible β-peptide polymers have also been explored as membrane-
active mimics of HDPs to display low cytotoxicity and potent
activities against drug-resistant microbes.45−52 However, up to
date, the potent antimicrobial activity of β-peptide polymers is
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only demonstrated in solution. Mechanism study indicated the
translocation of β-peptide polymers through the outer
membrane of Escherichia coli (E. coli), followed by disruption
of the inner membrane to kill the bacteria.53 Obviously, surface-
tethered β-peptide polymers are unable to move away from the
substrate and will not follow the above-mentioned antimicro-
bial mechanism. Therefore, it is unknown whether surface-
tethered β-peptide polymers can also display desired
antimicrobial activity. The contribution of this study is we
demonstrated, for the first time, that surface-tethered HDP
mimicking β-peptide polymers have excellent biocompatibility
and potent antimicrobial activity against both Gram -negative E.
coli and Gram-positive methicillin-resistant Staphylococcus
aureus (MRSA). This demonstration implies a broad
application of these types of polymers in antimicrobial surfaces,
especially against drug-resistant super bugs.

■ RESULTS AND DISCUSSION
To explore the antibacterial property of the β-peptide polymer-
modified surface, a thiol-terminated 18 mer heterochiral β-
peptide polymer, 1:1 DM-CH, was synthesized and covalently
attached to the gold surface using well-defined Au−thiol
chemistry (Figure 1).54 A C-terminal cysteine-modified

magainin 2 peptide was used as a comparison in this study
for several considerations. First, magainin 2 is a representative
and extensively studied HDP.31 Second, magainin has 24 amino
acid residues that give a chain length close to that of the 18 mer
β-peptide polymer. Finally, the cysteine residue was placed at
the C-termini of the magainin chain to present a higher density
of positive charges at the end away from the thiol group. This
design was carefully chosen to have a close comparison
between magainin and the polymer because this β-peptide

polymer has slightly higher density of positive charge at the end
away from the thiol-functionalized termini due to the slightly
biased subunit distribution along the polymer chain.55 To
obtain antimicrobial surfaces with a high grafting density, a
large excess of the thiol-terminated polymer or magainin was
used to modify the gold surface.54,56,57 The X-ray photoelectron
spectroscopy spectrum of the β-peptide polymer and magainin-
modified Au surface showed signals of C, N, and O from the β-
peptide polymer or magainin (Figure S1). Ellipsometry
characterization on a dry sample indicated an average polymer
thickness of 2.22 ± 0.05 nm. Because the interactions between
the bacteria and polymer-modified surface are within the
solution, we also did ellipsometry characterization on a wet
surface in solution and obtained an average polymer thickness
of 6.39 ± 0.01 nm and a surface polymer density of 1.17 chain/
nm2 (see Supporting Information). Although this character-
ization in the wet state is technically more challenging, the data
provides critical information of surface-tethered polymer chains
at the condition where they interact with bacterial cells. The
characterization on wet sample underpins the argument of our
proposed mode of action for the polymer-modified antimicro-
bial surface.
The antibacterial activities of the β-peptide polymer-modified

surface were evaluated by incubating the bacterial suspension
with the surface and examining the killing efficacy against
bacteria.58 As summarized in Figure 2, surfaces modified with
magainin and β-peptide polymer both effectively killed Gram-
negative E. coli, with β-peptide polymer-modified surface
performing better and having a complete killing of E. coli.
For Gram-positive MRSA, a super bug, it is noteworthy and
surprising to find that the β-peptide polymer-modified surface
kills MRSA completely though the magainin-modified surface
has almost no activity. A separate experiment examined the
supernatant that was incubated with the β-peptide polymer-
modified surface for different times and found no bacterial
killing effect at all (Figure S2). This result supported that the
strong bactericidal activity observed above was truly from the
surface killing on contact.
The bacterial cell morphology before and after cell

incubation with the β-peptide polymer-modified surface was
characterized by field emission scanning electron microscopy
(SEM) as shown in Figure 3. Both E. coli and MRSA cells in the
control groups have intact and smooth cell membrane. After
bacterial cells were incubated with the β-peptide polymer-
modified surface, rough cell membrane and even total
disruption of cell membrane were observed.
The possible hemolytic effect of β-peptide polymer- and

magainin-modified surfaces toward human red blood cell

Figure 1. Preparation of the antimicrobial β-peptide polymer and
polymer-modified surface.

Figure 2. Antibacterial activity of the β-peptide polymer-modified surface. Thioglycerol-modified surface and bare gold surface were used as controls.
(A) E. coli and (B) MRSA. **p < 0.01 and *p < 0.05.
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(hRBC) was also examined (Figure 4a). The magainin-
modified surface showed a moderate (about 7%) hemolytic
effect, but the β-peptide polymer-modified surface displayed no
observable hemolytic effect. SEM characterization (Figure 4b)
showed that hRBCs still retain healthy cell morphology after
incubation with β-peptide polymer-modified surface.
The biocompatibility of the β-peptide polymer-modified

surface was examined using NIH 3T3 fibroblast cells. The cells
displayed normal adhesion and spreading on the β-peptide
polymer-modified surface 2 h post cell seeding. After 2 day
culture, the cell number increased significantly and live cells
covered the whole surface evenly as demonstrated using live/
dead staining (Figure 5).
Previous mode-of-action study on antimicrobial β-peptide

polymer indicated that the free polymer in solution targets on
the inner membrane of E. coli and that the polymer passed
through the outer membrane quite easily without causing
leakage or damage on the outer membrane.53 On the basis of
this, it is surprising to find that the surface-tethered β-peptide
polymer also kills bacteria in high efficacy because the β-peptide
polymer in this case is unable to move away from the surface
and thus unable to follow the antimicrobial mechanism as a free
antimicrobial agent in solution. According to the preceding
literature, surface-tethered polymers may kill bacteria via two
distinct mode of actions: penetrating the bacterial envelop to
induce the leaking of cytoplasmic contents or depriving Ca2+

and Mg2+ ions from the bacterial membrane to destabilize the
membrane.59,60 The cell envelop is about 46 and 40 nm,
respectively, for Gram-negative E. coli and Gram-positive S.
aureus,61,62 which means that surface-tethered polymer chains

should be at least longer than the aforementioned bacterial
envelop to follow the cell penetration mode of action.59,60,63

Considering that the 18 mer β-peptide polymer (1:1 DM-CH)
only has a length of 6.39 nm when tethered to the Au surface,
the polymer is too short to penetrate the cell envelop.
Alternatively, we hypothesized that the highly charged surface
could deprive divalent ions, majorly Ca2+ and Mg2+, which are
important for stabilizing the bacterial cell membrane as studied
or reviewed in the precedent literature.11,63−67 To examine this
hypothesis, 20 mM Ca2+ or 35 mM Mg2+ was supplemented,
respectively, into the medium for bactericidal test to quench or
block the ability of the polymer surface to diffuse divalent ions
away from the bacterial cell membrane. As summarized in
Figure 6a, a profound reduction (up to over 80% reduction) in
the bactericidal efficacy was observed for both E. coli and MRSA
when divalent ions were added to the medium, with E. coli
being more sensitive to Ca2+ and MRSA being more sensitive
to Mg2+. In a further examination, as summarized in Figure 6b,
divalent ion chelating agent ethylenediaminetetraacetic acid
(EDTA) tetrasodium salt was added into the medium of the
above conditions at a final concentration of 0.9 mM. At such an
EDTA concentration in the presence of preadded Ca2+ or Mg2+

ions, no direct damage of bacterial cells by EDTA was observed.
After addition of EDTA, a significant increase of bacterial killing
efficacy was observed in all conditions. It is noteworthy that the
addition of EDTA had stronger effect on E. coli in the Ca2+

supplemental condition and stronger effect on MRSA in the
Mg2+ supplemental condition, which was consistent with the
above observation that E. coli was more sensitive to Ca2+ and
MRSA was more sensitive to Mg2+. The partial regain of
bacterial killing efficacy upon addition of EDTA into the

Figure 3. SEM characterization of bacterial cells before and after
incubation with the β-peptide polymer-modified surface.

Figure 4. Hemolytic study. (A) Hemolysis of the β-peptide polymer-modified surface toward hRBC. **p < 0.01. (B) SEM characterization of hRBCs
before and after incubation with the β-peptide polymer-modified surface.

Figure 5. Characterization of mammalian cell adhesion and culture on
the β-peptide polymer-modified surface using live/dead staining. The
images were taken after cells were seeded on the surface for 2 h and 2
days, respectively, with live cells stained with green fluorescence and
dead cells stained with red fluorescence.
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medium could come from the deprival of Ca2+ and Mg2+ by
EDTA to partially recycle the divalent ion diffusion capability of
the surface-tethered β-peptide polymer. These results alto-
gether supported that divalent ion diffusion away from the
bacterial membrane by the surface-tethered β-peptide polymer
played a critical role in bacterial killing on contact within this
study. Our finding that this antimicrobial surface likely kills
bacteria by depriving Ca2+ and Mg2+ ions is reasonable because
a similar effect was proposed in the precedent literature that
EDTA and antimicrobial peptides and polymers in solution and
surface-tethered polymers can destabilize the bacterial mem-
brane by depleting Ca2+ and Mg2+ from the mem-
brane.11,12,59,60,63,65−67 Moreover, in the process when this β-
peptide polymer-modified surface deprives Ca2+ and Mg2+ ions
from the bacterial cell membrane, surface-tethered β-peptide
polymers may also interact with the membrane and result in
negative curvature on the membrane as discussed in the
precedent literature.64,68−70

■ CONCLUSIONS

In conclusion, we have established the foundation of an
alternative and important application for the HDP-mimicking
β-peptide polymer as effective bactericidal surface modification.
The excellent bactericidal activity on contact against both
Gram-negative E. coli and Gram-positive MRSA, excellent
biocompatibility, structural diversity, and easy preparation
altogether imply potentially broad applications of β-peptide
polymers in antimicrobial surface modification for self-
sterilizing surface of biomaterials, surgical devices, and
biosensors. The short length of the polymer layer (6.39 nm)
rules out the possible membrane penetration mechanism.
However, the divalent ions and subsequent EDTA supple-
mentation tests support the hypothesis that the surface-tethered
β-peptide polymer kills bacteria on contact by diffusing divalent
ions away from the bacterial membrane.
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